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ABSTRACT

e considery the normal-theory regression model wben the error

disturbances are heteroscedastic, i.e., have non-constant variances.

-4W distinguishetwo cases: rf- )predictor heteroscedasticity, where

the variances depend on a function g of known quantities and {i:.

mean heteroscedasticity, where the variances depend on a function g

of the means. For the case where g is unknown, Carroll

showed by construction that, in certain cases, it is possible to estimate

the regression parameter as)ptotically as well as if g were known
7JU.

and weighted least squares applied. Ve reconsiderthis problem from v

the information bound theory of Begun, Hall, Huang tWellner-98Y)<
For mean heteroscedasticityC obtain a rather surprising result If

g were known in this case, Jobson & Fuller (1980) showed that the

maximum likelihood estimate is asymqtotically more efficient than

4 weighted least squares with known weights. When g is unknown the

full Jobson & Fuller improvements are not possible; however, we show

that one can, in theory, attain asymptotically better performance than

weighted least squares with knon weights. . .-

AMS (MOS) Subject Classification: Primary 62J05; Secondar" 62F10

tKey Words:'-Adaptation linear mo nonconstant variances, weighted

least squares, maximum likelihood
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1. INTROIUCTION

We consider the following heteroscedastic linear regression model.

The observed data are (Yi,xi) for i=1,...,N. Here Y is a scalar and

x is a p-vector. For technical reasons, we will assume that (Yi,xi)

are independent and identically distributed according to the model.

(1.1) Given x.,Y. is distributed with mean xTe variance

o2Q(xie) for some function Q. The density of

.(Yi-xiTr)(l2Q(Xi0)) " 1/2 is h(.), which is symetric

about zero and continuous.

(1.2) The {x} are bounded, independent and identically distributed

random variables possessing, except for a possible intercept term,

an absolutely continuous density s(.) with respect to some sigma-
finite measure uj.

The model (1.1) includes a wide variety of special cases, of which

two are the most important. The first we shall call mean-heterogeneity,

where the variance is a continuously differentiable function of the mean,

i.e.,

(1.3) Mean-Heterogeneity: Var(Yilxi) = 2 g(xT e),

The second special case is predictor-heterogeneity, where the variance

depends on known quantities through a continuously differentiable function

* g, i.e. ,

(1.4) Predictor Heterogeneity: Var(Yijxi) = a2 g(xi )

In (1.3) and (1.4), g is a density function with respect to some a-finite

measure on the support of xT0 and x, respectively.

,%
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It may appear odd that g is assumed to be a density. This was done

so that the general theory of Begun et al. (1983) is immediately

applicable. It should be relatively easy to extend their theory to

include classes of nuisance parameters g which are not necessarily

densities, and this extension would be natural in our setting. However,

the extra work would lengthen this article without providing any sub-

stantially new insights. Since a can be adjusted depending on g, in

practice it would not be difficult to standardize all the functions g

so that they are densities with respect to some measure.

The function g(*) in (1.3)-(1.4) is rarely known exactly, while

the density h(-) in (1.1) is usually assumed to be that of a standard

normal random variable. When g(.) is unknown except for a finite

number of parameters, a huge literature can be employed to estimate e.

For mean-heterogeneity, see Pritchard, Downie & Bacon (1977), Jobson

& Fuller (1980) and Carroll & Ruppert (1982a), among others. For

predictor-heterogeneity, see Hildreth and Houck (1968), Carroll &

Ruppert (1983), and Johansen (1983).

There is less literature on estimating e when the function g(.)

in (1.3) or (1.4) is unknown and must be estimated, see Carroll (1982)

for a theoretical study and Matloff, Rose and Tai (1984) as well as an

unpublished report by Cohen, Dalal and Tukey for empirical studies.

Let e be the weighted least squares estimate with known weights in
w

model (1.1), i.e.,

N N

9 w f ( xixi/Q(xi,ziO)) I xiYi/Q(xi,zie)
i=l j~l

V -- ,

*'. ."' .. 7



-4-

Then, under regularity conditions,

(1.5) N/2( w - 0) = Normal (O,Sw), where
N

Sw= plim o-2N"I N xixiT /Q(xi,zie)

We shall call 6w the optimal normal theory weighted least squares

estimate to indicate that it is based on knowing the weights and assuming
the {Yi} are normally distributed. Neither situation is likely to arise

too often in practice.

For mean-heterogeneity (1.3), Carroll (1982) showed by construction .

that by using nonparametric kernel regression estimation of squared

least squares residuals on least squares predicted values x L* 1 L' an
: estimate gN(.) of g(.) can be constructed with the following property.

Let gK be the weighted least squares estimate based on the estimated

weights 1/^,(xT0L). Then

(1.6) N/ 2(6k -) * Normal (0,Sw)

Comparing (1.5) with (1.6) we see that asymptotically one can do as well

as the optimal normal theory weighted least squares estimate even if the

variance function is completely unknown. Carroll (1982) also showed a

similar result for a special class of predictor-heterogeneity models.

If g(.) were known either exactly or up to a finite number of

parameters, and if the error density h(.) in (1.1) is the normal density,

then one could consider the normal theory maximum likelihood estimate
6M . For mean-heterogeneity, there is information about e in the variances

as well as the mean, and Jobson G Fuller (1980) were able to show that

'.p...d*~ .. . ... . * .- .*. * a .... .... . -........ -,,,,.
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the maximum likelihood estimate of e is asymptotically preferable to

optimal weighted least squares. Wre precisely,

(1.7) N1 2 (e - e) = Normal (O,SM), where SM < S .

For reasons of robustness, we have some doubts as to whether maximum

likelihood should be the method of choice for small samples, see Carroll

& Ruppert (1982b).

In the predictor-heteroscedasticity model (1.4), with normally distributed

observations, we thus know that it is possible in some circumstances to

achieve the asymptotic performance of optimal weighted least squares

even when the variance function g(x) is completely unknown. One purpose

of this note is to explore the generality of this phenomenon. In

" particular, if the symmetric error density h(.) in (1.1) is unknown as

well as the variance function g(.) in (1.4), we show that the information

available for estimating 0 is the same as when h(-) and g(-) are completely

known. We obtain our results by applying the theory of Begun, et al.

(1983) to models (1.3) and (1.4).

For normally distributed observations in a mean-heteroscedasticity

model, we have two asymptotic facts. First, it is possible to reproduce

Toptimal weighted least squares even when the variance function g(x 0)

in (1.3) is completely unknown. Second, if the form of g(.) is known

up to parameters, at the normal model it is possible to improve upon

optimal weighted least squares by using maximum likelihood. This leaves

unanswered two interesting questions. First, if g(.) is unknown in

model (1.3), is it possible to achieve the performance of maximum like-

lihood with known g(.)? Using the theory of Begun, et al, we show that

.N N
" " • S %- % . '.". ... %... % -" .. '. '.. *- -- * *q "
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the answer to this question is no, which in retrospect is perhaps not

surprising. Second, if g(.) is unknown in model (1.3), is it still

possible to improve upon optimal weighted least squares? We obtain only

a partial but perhaps surprising positive answer to this question.

NMre precisely, we show that if g(-) in (1.3) and s() in (1.2) are

smooth, then the information available for estimating 8 is more than

that provided by weighted least squares.

The paper is organized as follows. In Section 2 we outline the

theory developed by Begun, et al. In Sections 3-5 we apply this theory

to our problems, discussing in Section 6 the possibility of constructing

estimators which achieve the relevant information bounds.

.3--

2. THE BEGUN, HALL, HANG WELLNER THEORY

Lower bounds for estimation in semiparametric models is an area

undergoing considerable development. Suppose that z1, z2 ,.. . ,z N are *

independent and identically distributed random vectors possessing a

density function f(.,e,a,g) with respect to a sigma-finite measure 0.

Here 0 is a vector of parameters of interest, a is a vector of nuisance

parameters and g= (g13g2,g3) are densities with respect to sigma finite

measures v, v2 ' V3 respectively. Begun, et al.(1983) provide upper

bounds on the information available for estimating 6 when (o,g) is

unknown. Informally, their major result can be summarized as follows.

Let 2(.,e,o,g) be the logarithm of f(.,O,o,g) and let e,o2. be the

derivatives of the log-likelihood k with respect to e and o, respectively.

Define

B=EkZT' D=EikT and 0, k - BD' "oeh L 0o r3 -.

Let 1.1 denote the Euclidean normal and 11J1 the L2 norm.
V. .

Suppose that there are a bounded linear operators A L L2 -L 2 for which

%1

..-- '



n1/ 21 -e - h1- "O

(2.1) n1/ 2 10n - o01 - h2 --0

1/2(g/2_ gi / - iK .0 (i=1,23)

g 2) 1

implies for gn= (gnllgn2'gn3)

12121/2 1/2 '

E {2 n/[fl/(. ,On ,o ,n ) - fl/0(.,0oog)]/fl(.,6 ,%o,g)

h hl(A /fl (0,O '  0.

k=l

When this holds, f1/'2(,e,o,g) is said to be Hellinger differentiable.

As discussed by Begun et al. (1983), £ and £ are the score functionsa
for 0 and a and £,0 is the effective score for 6 when a is a nuisance
parameter but the gi are known. Begun et al. have a small technical error in

their remark 3.2 where they compute the "effective score for 0" in

the presence a Rs valued nuisance parameter n, which corresponds here

to y, and a density nuisance parameter g. Briefly, the effective

score for 0 is the part of score for 0 orthogonal to the subspace spanned

by the score for n and 'the score for g. Begun et al. compute this score

by finding po*, V the score for 6 in the presence of n, and then taking

the part of po'n orthogonal to the space of scores for g. Although

convenient, their computational method is correct only under the

condition that the score for n is orthogonal to the score for g. In

our notation this condition is equivalent to having

%I

v ..,-.
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31/

(2.2) E(( ) ( 1 Akk/f 1 /)J = 0k=1

for all choices of k in Bk. For ease of computation we will choose the

measure vk so that (2.2) holds.

To continue the Begun et al. method of computing the effective score

for 0 , if 0 is p-dimensional, hind n-vectors 3,!, C.- C,3 for which

3 3.Et (Akklf1l2)I [2 / Ak$k/fl2}=
(2.3) E{(X 6  - 2 k0 ~

k=1 k-1

for all 1' a3 in appropriate sets of functions B1, B2 , B3 . Technically,

the sets Bk must be closed subspaces of L2(Nk) such that

(2.4) f g/2 Bk dv = 0 if k Bk"

Equation (2.4) would not be necessary if we dropped the requirment

that 9k be a density with respect to vk. However, by a judicious choice

of vk (2.4) implies (2.2), and this fact is at least a minor convenience.

If S'k can be computed and is an element of Bk, then the information

bound is

(2.5) I. = E Z eT
where

3
(2.t) @ = -2 . Aka$k/f / .

k=l

The function (2.6) is the efficient score.

In a sense made precise by Begun, et al., for any regular estimator

of e for which

(2.N -1) N(0,),

.. .. . * . .. . ... ".... . . . '..- - . .-.....-...*.*.......**. * *.' , '., ' ,
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the best one can hope to do is to have =I 1, i.e., we must have that

in (2. 7),

(2.8) > I-1

3. INFORMATION BOUNDS FOR PREDICTOR-HETEROSCEDASTICITY

Consider the model defined by (1.1), (1.2) and (1.4). We wish to

estimate e, with a unknown. Also, the density s(.) of x is unknown, as

is the symetric density h(-) of (Y-x T0)/(ogl/2 (x)) and the variance

function g(.). We will show that the information bound 1, in (2.4) is exactly

the usual parametric information I computed with (g,h,s) all known.

In the language of Begun, et al., this is a situation for which adaptation

is possible.

The density function for the predictor-heterogeneity model is

(3.1) f = fugl/2 (x)]-l s(x) h{(y-xTO)/(gl/Z (x))J .

Writing r= (Y-xTe)/ g 1 2 (x)), it follows directly that

(3.2) -= x - and -. (1
g 2(x)

where f(r)/h(r) is an odd function of r. Since B= Eke =0, we have

e,2 e If we let

(3.3) n/- g/ 2 ) B 1V 0

(3.4) I! nl/2hl/2 n h1 / 2) - 0

p. J- *" *" -''" ,' ' ' ''' "" . - " " " " "% "" % " " "" ".. ",% .wh,"dw"- % .% "a- , ,,% " " % w " . . . -,- * . % . . . . . . . .- " ' - , . . . - - * . . '" . B
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(3.5) in /2Sn - s1  -_3 S 1/2

then one finds that

2(A1i1)/f 11 2 - l(x)r fi(r)/h(r) + 1/g 1 /2 W

2(A 2 2)/f / 2 - 2 2(r)/h /2(r)

2 2(V3)/f 1 / 2 = 2 B3(x)/s /2(x)

Since r (x)/h(r) is an even function, as is a2 (r)/h/
2 (r), we have that

for k=1,2,3

(3.6) E{Q, (2 A0 .fl

Note that (2.2) holds if E[O1(X)/gl(x) 0, i.e., if

f 61 (u)/g 112( ) s()du = 0. Therefore (2.2) is implied by (2.4) if v 1

is chosen so that go(p)dvl(pa) = so(v)di where so and go are the true

values of the density parameters s ang g. It follows from (2.2) and

(2.5) that 6,k= 0 for k=1,2,3, so that the efficient score is = and

(3.7) I, 1~e|x T 1 :i'

=E~fi(r)/h(r)} 2  l - xl

Note that this is the same information bound as for the purely parametric

case that g,h,s are all known. Thus, in principle at least, asymptotically

we should be able to adapt to (g,h,s), i.e., estimate e as well as if -

(g,h,s) were known.

U..
%I.

U-I U.,.g
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4. INFOIWTIa BOLH)S FOR HEN-HETEROSCEDASTICITY

The model is (1.1)-(1.3). Again s(x) is the density of x and h(.)

is the density of (Y-xT6)/(1g /2(xT 0), but now the variance of Y is a2 g(x T0)

In this section we compute the information boumd I, for estimating e

when (g,h,s) is unknown, and find that it is between the parametric

information when (gh,s) is known and the asymptotic variance of a

"weighted" likelihood estimate.

The density function is given by

= 1/2 T -1 T 1/2 T
(4.1) f = (ag/(x e)) s(x) h{(Y-x T)/(og (x 0))•

Again letting r = (y-xTe)/(gl/2(xTo)), we find that

(4.2) = -(r h(r)/h(r) + 1) { gcxT) E )"

x (r)
Jgl/ (xT0)h 'r)

Considering (3.2)-(3.5) with the difference that now g is a function of

xT , we obtain

2(Alil)/f 1/2 = -l(xTe) {r fi(r)/h(r) + 1} /gl/ 2 (xTO)

2(A232)/f
1/2 = 2 2 (r)/h

1/2(r)

2(A B3)/f 11 2 = 2 1 (x)/sl/2 W

3 3 03(x/ x

The orthogonality condition (3.6) holds for A262 and A3 3 but not for

A1 1. Suppose that xTe is not constant on the support of x, where e

is the true parameter. Noting that (A1 1 )/f 1 / 2 is a function of the

data only through ,rj and xTe, it follows from the least squares

projection theorem that

-.. ,.- -- -V" A
IN * qI"
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(4.3) 2 (A,1B.1)/f/2 -Ef oe C Ix T , Irl

1,'x TT)

= -(r h(r)/h(r) + 1) (
h Exlxo) - E( ).
g(xTe)

To see this, we must check two points. The first is (2.2), which follows

innediately upon noting that A2B2 and A10 1 depend on r only through jrl,
while it holds for AS3P3since E{r A(r)/h(r)} = -1. As before, (2.2) follows

from the judicious choice of v1 . To see this let

= Tt(v) = E(xx e=v),

we see that

2 gl/2 (v) B,(v) = g(v)t(v) - g(v) E(x g/g).

Suppose that we are interested in the information bound at

(e0,%Ogo,h ,so). Assume that g is continuous, that h0 ,s are densities

with respect to measures v2 and v3 respectively, and that the random

wafrable xT0 has continuous density ' with respect to Lebesgue

measure. Define 1(da) = ( o0 a)/go(a))da. Then condition (2.3) will hold.

From (4.3) it follows that the efficient score function is

(4.4) - i r+ aT
(4.4) -o ogl/xTh(r) I~r (r)/h(r) + 1)(g(x T)/g(x T0))

Oaog (JO eh (r)

{ {x - E(xlxT )).

The information bound is then

FP* .i

.
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(4.5) 1* = Sw (1/4) E{r i(r)/h(r) 112

E{( (x e)/g(xTo))2(x - E(xlxTO))(x E(xlx Te))T

When xTe is constant over the support of x, A 1 B3/f 1 / 2 is a function

of the data only through I rj, so that g(xTo) =1 by convention and

x h2r) , and 1,

In effect, for the homoscedastic case that either g or x T is constant, L!

the information bound is the usual homoscedastic information.

5. INFOR MATION BOUNDS AT THE NORMAL DISTRIBUTION

It is worth noting the following fact. Suppose we know h() a

priori, e.g., we assume that the data follow a normal distribution.

There is no extra information involved in knowing h(.) exactly if we

already know it is symmetrically distributed about zero as in (1.1).

Thus, even assuming normality, the information bounds (3.7) and (4.5)

are unchanged.

6. A HIEVING THE INFORMLTION BOUNDS

For normally distributed observations and simple linear regression,

the bound (3.7) is achieved by the estimator introduced by Carroll (1982).

For mean heteroscedasticity in simple linear regression or any other model

where the map x - xTo is one-to-one, x=E(xlxTE) so that the second term in

(4.5) vanishes. In this case, an estimator introduced by Carroll (1982) has i-
been shown to achieve the information bounds when the data are normally

distributed.

,*
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We now sketch our reasons for believing that estimators can be

constructed which achieve the information bounds(3.7) and (4.5).

We are presently working on finding precise conditions under which the

following arguments are technically correct. Our starting point is the

one-step construction used in Theorem 3.1 of Bickel (1982) and

generalized somewhat in an unpublished paper by W.M. Huang. As outlined

by Huang and Bickel in his conditions GR(iv) and H', the three essential

steps are (1) that a root-N consistent estimator of a exists; (2)

that consistent estimates of the information bound (3.7) or (4.5)

exist; (3) we can consistently estimate the optimal score function

(3.2) or (4.4) rather well. The first step is easy, because least

squares and simple M-estimates are already root-N consistent. For

predictor-heteroscedasticity, the second and third steps should not

be too hard to verify by using the kernel estimate of g(.) proposed

by Carroll (1982) and a kernel estimate of fi/h as in, for example,

Lemma 4.1 of Bickel (1982). The second and third steps should hold

for mean-heteroscedasticity as well, but are likely to be much harder

technically. The reason is that in (4.4) and (4.5), we need to estimate

not only g and fi/h, but also j/g and E(xlxT e).

If the distribution of {x. is discrete rather than continuous
1

as assumed in (1.2), there are problems of identifiability since many

different functions g will fit the variance function at each support

point x. Our belief is that, for this case, no real asymptotic improve-

ment will be possible over ordinary weighted least squares unless the

function g is more tightly specified.

iV
.S'
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The issue of robustness raised by Carroll & Ruppert (1982b) is

still an important one. Generalized least squares, which has asymptotic

variance Sw , is typically rather robust against small deviations in the

model, e.g., the variance not quite a function of the mean, say but

rather depending on x in a slightly different fashion. Our guess is that

the same cannot be said of any estimator achieving the information bound.

We have calculated the possible asymptotic improvement over generalized

least squares for normally distributed data design and means of Jobson &

Fuller (1980) for the special model

E = x T

Var(Yi) = a2(XTO).

The improvement tended to be monotonically increasing in the coefficient

of variation, becoming noticable only when the average coefficient of

variation exceeded 0.40. In our experience, nearly normally distributed

heteroscedastic data typically have average coefficients of variation not

exceeding 0.30. While our calculations are too fragmentary to make any

general conclusions, they do suggest that when the form of the variance

function is unknown, the simple smoothing techniques of Carroll (1982)

will often be nearly asymptotically efficient.

I o.
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TABLE 1

Comparisons based on 1/3 of various asymptotic covariances

Form of
Variance

Generalized Function
a a Least Squares a known a unknown Unknown

0.0 0.5 .024 .024 .024 .024

1.0 .096 .096 .096 .096

0.5 0.5 .921 .918 .919 .919

1.0 3.681 3.643 3.660 3.66

1.0 0.5 29.06 22.18 25.03 25.39

1.0 116.25 55.89 76.43 80.59
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